Machine Learning-Based Classification of Electrical Low Voltage Cable Degradation

Archive ouverte : Article de revue

Codjo, Egnonnumi Lorraine | Bakhshideh Zad, Bashir | Toubeau, Jean-François | François, Bruno | Vallée, François

Edité par HAL CCSD ; MDPI

International audience. Low voltage distribution networks have not been traditionally designed to accommodate the large-scale integration of decentralized photovoltaic (PV) generations. The bidirectional power flows in existing networks resulting from the load demand and PV generation changes as well as the influence of ambient temperature led to voltage variations and increased the leakage current through the cable insulation. In this paper, a machine learning-based framework is implemented for the identification of cable degradation by using data from deployed smart meter (SM) measurements. Nodal voltage variations are supposed to be related to cable conditions (reduction of cable insulation thickness due to insulation wear) and to client net demand changes. Various machine learning techniques are applied for classification of nodal voltages according to the cable insulation conditions. Once trained according to the comprehensive generated datasets, the implemented techniques can classify new network operating points into a healthy or degraded cable condition with high accuracy in their predictions. The simulation results reveal that logistic regression and decision tree algorithms lead to a better prediction (with a 97.9% and 99.9% accuracy, respectively) result than the k-nearest neighbors (which reach only 76.7%). The proposed framework offers promising perspectives for the early identification of LV cable conditions by using SM measurements.

Consulter en ligne

Suggestions

Du même auteur

Impact of the line resistance statistical distribution on a Probabilistic L...

Archive ouverte: Communication dans un congrès

Codjo, Egnonnumi Lorraine | 2020-09-28

International audience

Stockage d'énergie électrique pour les bâtiments au sein de réseaux intelli...

Livre | Robyns, Benoît (1963-....). Auteur | 2019

"Les développements actuels dans le domaine des énergies renouvelables, ainsi que la tendance à l'autoproduction et à l'autoconsommation d'énergie, ont suscité un intérêt accru pour les moyens de stockage de l'énergie él...

Énergies renouvelables : rappels de cours et exercices corrigés / Dhaker Ab...

Livre | Abbes, Dhaker (1984-....). Auteur | 2023

Ce manuel propose des résumés de cours, des exercices et problèmes corrigés couvrant l’ensemble des systèmes d’énergie renouvelable (hydraulique, solaire thermique, solaire photovoltaïque, éolien, biomasse, etc.) et incluant égale...

Du même sujet

Predicting manual wheelchair initiation movement with EMG activity during o...

Archive ouverte: Article de revue

Chikh, Soufien | 2020-07-09

International audience. Context/Objective: This is a preliminary study of movement finalities prediction in manual wheelchairs (MWCs) from electromyography (EMG) data. MWC users suffer from musculoskeletal disorders...

Foundations of machine learning / Mehryar Mohri, Afshin Rostamizadeh, Ameet...

Livre | Mohri, Mehryar. Auteur | 2018 - 2nd edition

Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covere...

Machine learning for risk calculations : a practitioner's view / Ignacio Ru...

Livre | Rojas Ruiz, Ignacio (1969-....). Auteur | 2021

Machine learning avec Scikit-Learn : mise en oeuvre et cas concrets / Aurél...

Livre | Géron, Aurélien (19..-....). Auteur | 2019 - 2e édition

"Cet ouvrage, conçu pour tous ceux qui souhaitent s'initier au Machine Learning (apprentissage automatique) est la traduction de la première partie du best-seller américain Hands-On Machine Learning with Scikit-Learn & TensorFl...

Artificial intelligence for business : what you need to know about machine ...

Livre | Rose, Doug. Auteur | 2021 - Second edition

A Survey of Applied Machine Learning Techniques for Optical OFDM based Netw...

Archive ouverte: Pré-publication, document de travail, ...

Mrabet, Hichem | 2021-10-18

26 pages, 4 figures and 4 tables. In this survey, we analyze the newest machine learning (ML) techniques for optical orthogonal frequency division multiplexing (O-OFDM)-based optical communications. ML has been prop...

Chargement des enrichissements...