Foundations of machine learning / Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar

Livre

Mohri, Mehryar. Auteur | Rostamizadeh, Afshin. Auteur | Talwalkar, Ameet. Auteur

Edité par The MIT Press - 2018 - 2nd edition

Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition. [Source : 4e de couv.]

Autres documents dans la collection «Adaptative computation and machine learning series»

Vérification des exemplaires disponibles ...

Se procurer le document

Vérification des exemplaires disponibles ...

Suggestions

Du même sujet

Essential math for data science : take control of your data with fundamenta...

Livre | Nield, Thomas. Auteur | 2022

To succeed in data science you need some math proficiency. But not just any math. This common-sense guide provides a clear, plain English survey of the math you'll need in data science, including probability, statistics, hypothesi...

Machine learning et supply chain : révolution ou effet de mode ? / Alain Sc...

Livre | Schnapper, Alain (19..-....). Auteur | 2019

La 4e de couverture indique : "Les systèmes industriels et logistiques modernes génèrent un nombre considérable de données, que les progrès des nouvelles technologies permettent de capter de plus en plus efficacement : carac...

Deep learning en action : la référence du praticien / Josh Patterson et Ada...

Livre | Patterson, Josh (19..-....). Auteur | 2018

"Plongez au coeur du Deep Learning. Ce livre a été écrit pour tous ceux qui souhaitent s'initier au Deep Learning (apprentissage profond). Il est la suite logique du titre "Le Machine learning avec Python" paru en février 2018. Le...

Fundamentals of deep learning : designing next-generation machine intellige...

Livre | Buduma, Nithin (19..-....). Auteur | 2022 - 2nd edition

Le machine learning avec Python : la bible des data scientists / Andreas C....

Livre | Müller, Andreas C.. Auteur | 2018

La 4e de couv. indique : "Le machine learning (ou apprentissage automatique) est désormais partie intégrante de nombreuses applications commerciales et projets de recherche. Mais ce domaine ne reste pas l'apanage des grandes entre...

Machine learning avec Scikit-Learn : mise en oeuvre et cas concrets / Aurél...

Livre | Géron, Aurélien (19..-....). Auteur | 2019 - 2e édition

"Cet ouvrage, conçu pour tous ceux qui souhaitent s'initier au Machine Learning (apprentissage automatique) est la traduction de la première partie du best-seller américain Hands-On Machine Learning with Scikit-Learn & TensorFl...

Chargement des enrichissements...