Signal Denoising and Detection for Uplink in LoRa Networks based on Bayesian-optimized Deep Neural Networks

Archive ouverte : Article de revue

Tesfay, Angesom Ataklity | Kharbech, Sofiane | Simon, Eric Pierre | Clavier, Laurent

Edité par HAL CCSD ; Institute of Electrical and Electronics Engineers

International audience. Long-range and low-power communications are suitable technologies for the Internet of things networks. The long-range implies a very low signal-to-noise ratio at the receiver. In addition, low power consumption requires reduced signaling, hence the use of less complex protocols, such as ALOHA, so reduced communication coordination. Therefore, the increase of objects using this technology will automatically lead to an increase in interference. In this paper, we propose a detector for Long Range (LoRa) networks based on an for denoising and dealing with the interference, followed by a for symbol detection. Simulation results demonstrate that the proposed approach outperforms both the convolutional neural network-based detector and the classical LoRa detector in the presence of interference from other LoRa users. The proposed detector shows around 3 dB gain for a target Symbol Error Rate (SER) of 10-4.

Consulter en ligne

Suggestions

Du même auteur

Dealing with interfering users in LoRa Networks. Gérer les interférences de...

Archive ouverte: Thèse

Tesfay, Angesom Ataklity | 2021-10-01

Internet of Things (IoT) technology has become ubiquitous in many applications, and its use is growing very fast. However, the expansion of IoT faces a significant difficulty of scalability, which is, the very dense deployment of ...

Deep Learning-based Signal Detection for Uplink in LoRa-like Networks

Archive ouverte: Communication dans un congrès

Tesfay, Angesom Ataklity | 2021-09-13

International audience. The increasing number of devices together with uncoordinated transmissions result in a major challenge of scalability in the Internet of things. This paper deals with signal detection in the ...

Serial interference cancellation for improving uplink in LoRa-like networks

Archive ouverte: Communication dans un congrès

Tesfay, Angesom Ataklity | 2020-08-31

International audience. In this paper, we present a new receiver design, which significantly improves performance in the Internet of Things networks such as LoRa, i.e., having a chirp spread spectrum modulation. The...

Du même sujet

Deep Learning-based Signal Detection for Uplink in LoRa-like Networks

Archive ouverte: Communication dans un congrès

Tesfay, Angesom Ataklity | 2021-09-13

International audience. The increasing number of devices together with uncoordinated transmissions result in a major challenge of scalability in the Internet of things. This paper deals with signal detection in the ...

Deep learning based face beauty prediction via dynamic robust losses and en...

Archive ouverte: Article de revue

Bougourzi, F. | 2022-04

International audience. In the last decade, several studies have shown that facial attractiveness can be learned by machines. In this paper, we address Facial Beauty Prediction from static images. The paper contains...

Serial interference cancellation for improving uplink in LoRa-like networks

Archive ouverte: Communication dans un congrès

Tesfay, Angesom Ataklity | 2020-08-31

International audience. In this paper, we present a new receiver design, which significantly improves performance in the Internet of Things networks such as LoRa, i.e., having a chirp spread spectrum modulation. The...

Deep Learning-based receiver for Uplink in LoRa Networks with Sigfox Interf...

Archive ouverte: Communication dans un congrès

TESFAY, Angesom Ataklity | 2022-10-10

International audience. The Internet of Things faces a significant scaling issue due to the rapid growth of the number of devices and asynchronous communications. Different technologies in the license-free industria...

ILC-Unet++ for Covid-19 Infection Segmentation

Archive ouverte: Communication dans un congrès

Bougourzi, Fares | 2022-05-23

International audience. Since the appearance of Covid-19 pandemic, in the end of 2019, Medical Imaging has been widely used to analysis this disease. In fact, CT-scans of the Lung can help to diagnosis, detect and q...

Face Presentation Attack Detection Using Deep Background Subtraction

Archive ouverte: Article de revue

Benlamoudi, Azeddine | 2022-05

International audience. Currently, face recognition technology is the most widely used method for verifying an individual’s identity. Nevertheless, it has increased in popularity, raising concerns about face present...

Chargement des enrichissements...