0 avis
A sustainable approach to manage metal-contaminated soils a preliminary greenhouse study for the possible production of metal-enriched ryegrass biomass for biosourced catalysts
Archive ouverte : Article de revue
Edité par HAL CCSD ; Springer Verlag (Germany)
International audience. Two kitchen garden soils (A and B) sampled in contaminated areas were amended using phosphates in sustainable quantities in order to reduce the environmental availability of potentially toxic inorganic elements (PTEs) and to favour the availability of alkali, alkali earth and micronutrients. The environmental availability of PTEs was evaluated using a potential plant for revegetation of contaminated soils (ryegrass) and a mixture of low molecular weight organic acids. Despite the highest contamination level of B, the concentration of metals was highest in the ryegrass shoots grown on A for the two harvests. These results correlated well with those obtained using low molecular weight organic acids for Cd, Zn and Cu, whereas this mixture failed to represent the transfer of nutrients due to the presence of biological and physiological mechanisms. The statistical differences between the biomass of ryegrass obtained at the first and the second harvests were attributed to the decrease of available potassium, implicated in the growth and development of plants. Phosphates increased the ratios Zn/Cd, Zn/Pb and Zn/Cu up to 176 ± 48, 38 ± 6 and 80 ± 12, respectively, and made possible the reduction of the concentration of Cd and Pb in the shoots of ryegrass by 22% and 25%, respectively. The concentration of Zn in the shoots of ryegrass from the first and the second harvests grown on soil A were in the range 1050–2000 mg kg−1, making this plant a potential biomass to (i) produce biosourced catalysts for organic chemistry applications in a circular economy concept and (ii) limit human exposure to commercial Lewis acids. A preliminary application was identified. © 2019, Springer Nature Switzerland AG.