Extraction and optimization of classification rules for temporal sequences: Application to hospital data

Archive ouverte : Article de revue

Vandromme, Maxence | Jacques, Julie | Taillard, Julien | Arnaud, Hansske | Jourdan, Laetitia | Dhaenens, Clarisse

Edité par HAL CCSD ; Elsevier

International audience. This study focuses on the problem of supervised classification on heterogeneous temporal data featuring a mixture of attribute types (numeric, binary, symbolic, temporal). We present a model for classification rules designed to use both non-temporal attributes and sequences of temporal events as predicates. We also propose an efficient local search-based metaheuristic algorithm to mine such rules in large scale, real-life data sets extracted from a hospital’s information system. The proposed algorithm, MOSC (Multi-Objective Sequence Classifier), is compared to standard classifiers and previous works on these real data sets and exhibits noticeably better classification performance. While designed with medical applications in mind, the proposed approach is generic and can be used for problems from other application domains.

Consulter en ligne

Suggestions

Du même auteur

ClinMine: Optimizing the Management of Patients in Hospital

Archive ouverte: Article de revue

Dhaenens, Clarisse | 2018-01

International audience. A better understanding of “patient pathway” thanks to data analysis can lead to better treatments for patients. The ClinMine project, supported by the The French National Research Agency (ANR...

The Detection of hospitalized patients at risk of testing positive to multi...

Archive ouverte: Article de revue

Jacques, Julie | 2020-07-25

International audience

Improving Local Search for Neural Architecture Search

Archive ouverte: Communication dans un congrès

Zouambi, Meyssa | 2022-02-23

International audience. Improving Local Search for Neural Architecture Search

Du même sujet

Essential math for data science : take control of your data with fundamenta...

Livre | Nield, Thomas. Auteur | 2022

To succeed in data science you need some math proficiency. But not just any math. This common-sense guide provides a clear, plain English survey of the math you'll need in data science, including probability, statistics, hypothesi...

Guide Delachaux des arbres de France : 200 espèces décrites et illustrées /...

Livre | Johnson, Owen (1966-....). Auteur | 2014

Data mining and market intelligence for optimal marketing returns / Susan C...

Livre | Chiu, Susan. Auteur | 2008

Cover. Contents. Preface. Biographies. Chapter 1 Introduction. Strategic importance of metrics, marketing research and data mining in today's marketing world. The role of metrics. The role of research. The role of data mining. An ...

Computational life sciences : data engineering and data mining for life sci...

Livre

This text broadly covers the given spectrum of disciplines in computational life sciences, transforming it into a strong helping hand for teachers, students, practitioners and researchers.

Les big data : un art de la décision / Églantine Schmitt

Livre | Schmitt, Églantine. Auteur | 2020

L’exploitation de grandes masses de données numériques n’est jamais une activité purement technique. Elle requiert en effet d’adopter une approche interprétative et exploratoire, bien connue des sciences humaines, pour rendre ...

Practical data science for information professionals / David Stuart

Livre | Stuart, David Patrick. Auteur | 2020

"The growing importance of data science, and the increasing role of information professionals in the management and use of data, are brought together in Practical Data Science for Information Professionals to provide a practical i...

Chargement des enrichissements...