Poisson QMLE of Count Time Series Models

Archive ouverte : Article de revue

Ahmad, Ali | Francq, Christian

Edité par HAL CCSD ; Wiley-Blackwell

International audience. Regularity conditions are given for the consistency of the Poisson quasi-maximum likelihood estimator of the conditional mean parameter of a count time series model. The asymptotic distribution of the estimator is studied when the parameter belongs to the interior of the parameter space and when it lies at the boundary. Tests for the significance of the parameters and for constant conditional mean are deduced. Applications to specific integer-valued autoregressive (INAR) and integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH) models are considered. Numerical illustrations, Monte Carlo simulations and real data series are provided.

Consulter en ligne

Suggestions

Du même auteur

Contribution to econometrics of time series with integer values. Contributi...

Archive ouverte: Thèse

Ahmad, Ali | 2016-12-05

The framework of this PhD dissertation is the conditional mean count time seriesmodels. We propose the Poisson quasi-maximum likelihood estimator (PQMLE) for the conditional mean parameters. We show that, under quite general regul...

Du même sujet

Contribution to econometrics of time series with integer values. Contributi...

Archive ouverte: Thèse

Ahmad, Ali | 2016-12-05

The framework of this PhD dissertation is the conditional mean count time seriesmodels. We propose the Poisson quasi-maximum likelihood estimator (PQMLE) for the conditional mean parameters. We show that, under quite general regul...

Chargement des enrichissements...