Model Order Reduction of Electrical Machines with Multiple Inputs

Archive ouverte : Article de revue

Farzam Far, M. | Belahcen, A. | Rasilo, P. | Clenet, S. | Pierquin, A.

Edité par HAL CCSD

International audience. In this paper, proper orthogonal decomposition method is employed to build a reduced-order model from a high-order nonlinear permanent magnet synchronous machinemodel with multiple inputs. Three parameters are selected as the multiple inputs of the machine. These parameters are terminal current, angle of the terminal current, and rotationangle. To produce the lower-rank system, snapshots or instantaneous system states are projected onto a set of orthonormal basis functions with small dimension. The reducedmodel is then validated by comparing the vector potential, flux density distribution, and torque results of the original model,which indicates the capability of using the proper orthogonal decomposition method in the multi-variable input problems. The developed methodology can be used for fast simulations of the machine.

Consulter en ligne

Suggestions

Du même auteur

Data-Driven Model-Order Reduction for Magnetostatic Problem Coupled With Ci...

Archive ouverte: Article de revue

Pierquin, A. | 2018-03

International audience

Surrogate Model Based on the POD Combined With the RBF Interpolation of Non...

Archive ouverte: Article de revue

Henneron, T. | 2020-01

International audience. The Proper Orthogonal Decomposition (POD) is an interesting approach to compress into a reduced basis numerous solutions obtained from a parametrized Finite Element (FE) model. In order to ob...

A multiscale model for magneto mechanical behaviour of ferromagnetic materi...

Archive ouverte: Communication dans un congrès

Martin, Floran | 2018-10-28

https://www.aconf.org/conf_152807.html. International audience

Du même sujet

Model-Order Reduction of Magnetoquasi-Static Problems Based on POD and Arno...

Archive ouverte: Communication dans un congrès

Pierquin, Antoine | 2014-05

The proper orthogonal decomposition method and Arnoldi-based Krylov projection method are investigated in order to reduce a finite-element model of a quasi-static problem. Both methods are compared on an academic example in terms ...

Parametric Geometric Metamodel of Nonlinear Magnetostatic Problem Based on ...

Archive ouverte: Article de revue

Boumesbah, Allaa Eddine | 2022

International audience. A parametric geometric metamodel is built for a nonlinear magnetostatic problem, using proper orthogonal decomposition approach combined with radial basis functions interpolation. Furthermore...

Model Order Reduction of Magnetoquasistatic Problems Based on POD and Arnol...

Archive ouverte: Article de revue

Pierquin, Antoine | 2015

International audience. The Proper Orthogonal Decomposition method and the Arnoldi-based Krylov projection method are investigated in order to reduce a finite element model of a quasistatic problem. Both methods are...

Balanced Proper Orthogonal Decomposition Applied to Magnetoquasistatic Prob...

Archive ouverte: Article de revue

Montier, Laurent | 2017-03-16

International audience. Model Order Reduction (MOR) methods are applied in different areas of physics in order to reduce the computational time of large scale systems. It has been an active field of research for man...

Reduction of a Finite Element Parametric Model using Adaptive POD Methods –...

Archive ouverte: Article de revue

Clenet, Stéphane | 2015-12-01

International audience. Model Order Reduction (MOR) methods enable reduction of the computation time when dealing with parametrized numerical models. Among these methods, the Proper Orthogonal Decomposition (POD) me...

Surrogate Model Based on the POD Combined With the RBF Interpolation of Non...

Archive ouverte: Article de revue

Henneron, T. | 2020-01

International audience. The Proper Orthogonal Decomposition (POD) is an interesting approach to compress into a reduced basis numerous solutions obtained from a parametrized Finite Element (FE) model. In order to ob...

Chargement des enrichissements...