Big data @ work : dispelling the myths, uncovering the opportunities / Thomas H. Davenport

Livre

Davenport, Thomas H. (1954-....). Auteur

Edité par Harvard Business School Publishing. Boston - 2014

This book will help you understand: (1) Why big data is important to you and your organization, (2) What technology you need to manage it, (3) How big data could change your job, your company, and your industry, (4) How to hire, rent, or develop the kinds of people who make big data work, (5) The key success factors in implementing any big data project, and (6) How big data is leading to a new approach to managing analytics. With dozens of company examples, including UPS, GE, Amazon, United Healthcare, Citigroup, and many others, this book will help you seize all opportunities--from improving decisions, products, and services to strengthening customer relationships. It will show you how to put big data to work in your own organization so that you too can harness the power of this ever-evolving new resource.

Vérification des exemplaires disponibles ...

Se procurer le document

Vérification des exemplaires disponibles ...

Suggestions

Du même auteur

Working knowledge : how organizations manage what they know / Thomas H. Dav...

Livre | Davenport, Thomas H. (1954-....). Auteur | 2000

Competing on analytics : the new science of winning / Thomas H. Davenport a...

Livre | Davenport, Thomas H. (1954-....). Auteur | 2007

Du même sujet

Les big data : un art de la décision / Églantine Schmitt

Livre | Schmitt, Églantine. Auteur | 2020

L’exploitation de grandes masses de données numériques n’est jamais une activité purement technique. Elle requiert en effet d’adopter une approche interprétative et exploratoire, bien connue des sciences humaines, pour rendre ...

Data science / John D. Kelleher and Brendan Tierney

Livre | Kelleher, John D. (1974-....). Auteur | 2018

Essential math for data science : take control of your data with fundamenta...

Livre | Nield, Thomas. Auteur | 2022

To succeed in data science you need some math proficiency. But not just any math. This common-sense guide provides a clear, plain English survey of the math you'll need in data science, including probability, statistics, hypothesi...

Data science for business : [what you need to know about data mining and da...

Livre | Provost, Foster. Auteur | 2013

LA 4e de couverture porte : "This broad, deep, but not-to-technical quide introduces you to the fundamental principes of data scicence and walks you through the data-analytic thinking" necessary for extracting useful knowledge and...

Le machine learning avec Python : la bible des data scientists / Andreas C....

Livre | Müller, Andreas C.. Auteur | 2018

La 4e de couv. indique : "Le machine learning (ou apprentissage automatique) est désormais partie intégrante de nombreuses applications commerciales et projets de recherche. Mais ce domaine ne reste pas l'apanage des grandes entre...

Deep data analytics for new product development / Walter R. Paczkowski

Livre | Paczkowski, Walter R.. Auteur | 2020

"This book presents and develops the deep data analytics for providing the information needed for successful new product development. Deep Data Analytics for New Product Development has a simple theme: information about what custo...

Chargement des enrichissements...